久碰香蕉线视频在线观看视频|色婷婷六月亚洲6月中文字幕|欧美va欧美va在线|久久国产欧美日韩精品图片

  • <style id="7ee4u"></style><object id="7ee4u"><button id="7ee4u"></button></object>

        <dfn id="7ee4u"><ul id="7ee4u"><source id="7ee4u"></source></ul></dfn>

        考研高數(shù)應(yīng)對(duì)技巧

        時(shí)間:2022-11-03 12:06:19 考研學(xué)習(xí) 我要投稿

        考研高數(shù)應(yīng)對(duì)技巧

          要想在考研數(shù)學(xué)上取得好的成績(jī),就必須首先熟悉考研題型,這樣我們才能夠針對(duì)不同的題型掌握不同的答題技巧,下面為大家?guī)?lái)考研高數(shù)中六種常見(jiàn)題型歸納。

        考研高數(shù)應(yīng)對(duì)技巧

          【考研高數(shù)應(yīng)對(duì)技巧

          1、求極限

          無(wú)論數(shù)學(xué)一、數(shù)學(xué)二還是數(shù)學(xué)三,求極限是高等數(shù)學(xué)的基本要求,所以也是每年必考的內(nèi)容。

          區(qū)別在于有時(shí)以4分小題形式出現(xiàn),題目簡(jiǎn)單;有時(shí)以大題出現(xiàn),需要使用的方法綜合性強(qiáng)。比如大題可能需要用到等價(jià)無(wú)窮小代換、泰勒展開(kāi)式、洛比達(dá)法則、分離因式、重要極限等幾種方法,有時(shí)需要選擇多種方法綜合完成題目。另外,分段函數(shù)在個(gè)別點(diǎn)處的導(dǎo)數(shù),函數(shù)圖形的漸近線,以極限形式定義的函數(shù)的連續(xù)性、可導(dǎo)性的研究等也需要使用極限手段達(dá)到目的,須引起注意!

          2、利用中值定理證明等式或不等式

          利用中值定理證明等式或不等式,利用函數(shù)單調(diào)性證明不等式證明題雖不能說(shuō)每年一定考,但也基本上十年有九年都會(huì)涉及。

          等式的證明包括使用4個(gè)常見(jiàn)的微分中值定理(即羅爾中值定理、拉格朗日中值定理、柯西中值定理、泰勒中值定理),1個(gè)定積分中值定理;不等式的證明有時(shí)既可使用中值定理,也可使用函數(shù)單調(diào)性。這里泰勒中值定理的使用時(shí)的一個(gè)難點(diǎn),但考查的概率不大。

          3、求導(dǎo)

          一元函數(shù)求導(dǎo)數(shù),多元函數(shù)求偏導(dǎo)數(shù)求導(dǎo)數(shù)問(wèn)題主要考查基本公式及運(yùn)算能力,當(dāng)然也包括對(duì)函數(shù)關(guān)系的處理能力。

          一元函數(shù)求導(dǎo)可能會(huì)以參數(shù)方程求導(dǎo)、變限積分求導(dǎo)或應(yīng)用問(wèn)題中涉及求導(dǎo),甚或高階導(dǎo)數(shù);多元函數(shù)(主要為二元函數(shù))的偏導(dǎo)數(shù)基本上每年都會(huì)考查,給出的函數(shù)可能是較為復(fù)雜的顯函數(shù),也可能是隱函數(shù)(包括方程組確定的隱函數(shù))。另外,二元函數(shù)的極值與條件極值與實(shí)際問(wèn)題聯(lián)系極其緊密,是一個(gè)考查重點(diǎn)。極值的充分條件、必要條件均涉及二元函數(shù)的偏導(dǎo)數(shù)。

          4、級(jí)數(shù)

          級(jí)數(shù)問(wèn)題常數(shù)項(xiàng)級(jí)數(shù)(特別是正項(xiàng)級(jí)數(shù)、交錯(cuò)級(jí)數(shù))斂散性的判別,條件收斂與絕對(duì)收斂的本質(zhì)含義均是考查的重點(diǎn),但常常以小題形式出現(xiàn)。

          函數(shù)項(xiàng)級(jí)數(shù)(冪級(jí)數(shù),對(duì)數(shù)一的考生來(lái)說(shuō)還有傅里葉級(jí)數(shù),但考查的頻率不高)的收斂半徑、收斂區(qū)間、收斂域、和函數(shù)等及函數(shù)在一點(diǎn)的冪級(jí)數(shù)展開(kāi)在考試中常占有較高的分值。

          5、積分的計(jì)算

          積分的計(jì)算包括不定積分、定積分、反常積分的計(jì)算,以及二重積分的計(jì)算,對(duì)數(shù)一考生來(lái)說(shuō)常主要是三重積分、曲線積分、曲面積分的計(jì)算。

          這是以考查運(yùn)算能力與處理問(wèn)題的技巧能力為主,以對(duì)公式的熟悉及空間想象能力的考查為輔的。需要注意在復(fù)習(xí)中對(duì)一些問(wèn)題的靈活處理,例如定積分幾何意義的使用,重心、形心公式的使用,對(duì)稱性的使用等。

          6、微分方程解常微分方程

          微分方程解常微分方程方法固定,無(wú)論是一階線性方程、可分離變量方程、齊次方程還是高階常系數(shù)齊次與非齊次方程,只要記住常用形式,注意運(yùn)算準(zhǔn)確性,在考場(chǎng)上正確運(yùn)算都沒(méi)有問(wèn)題。

          但這里需要注意:研究生考試對(duì)微分方程的考查常有一種反向方式,即平常給出方程求通解或特解,現(xiàn)在給出通解或特解求方程。這需要大家對(duì)方程與其通解、特解之間的關(guān)系熟練掌握。

          【考研高數(shù)二知識(shí)點(diǎn)總結(jié)

          1.函數(shù)、極限與連續(xù)

          重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無(wú)窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無(wú)實(shí)根。

          2.一元函數(shù)微分學(xué)

          重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的`實(shí)際應(yīng)用、曲線漸近線的求法。

          3.一元函數(shù)積分學(xué)

          重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。

          4.向量代數(shù)與空間解析幾何

          主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問(wèn)題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。

          5.多元函數(shù)微分學(xué)

          重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問(wèn)題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無(wú)條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。

          6.多元函數(shù)積分學(xué)

          重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。

          7.無(wú)窮級(jí)數(shù)

          重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開(kāi)問(wèn)題。

          8.常微分方程及差分方程

          重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。

          “師傅領(lǐng)進(jìn)門(mén),修行在個(gè)人”,平時(shí)需要同學(xué)們多下功夫,注意消化吸收老師講解的東西。越努力越幸運(yùn),通過(guò)一年的努力,你會(huì)發(fā)現(xiàn)收獲的不僅是優(yōu)異的成績(jī),還有一年難忘的奮斗經(jīng)歷。

          【考研數(shù)學(xué)高數(shù)必考定理

          一、導(dǎo)數(shù)與微分

          1、函數(shù)f(x)在點(diǎn)x0處可導(dǎo)=>函數(shù)在該點(diǎn)處連續(xù);函數(shù)f(x)在點(diǎn)x0處連續(xù)≠>在該點(diǎn)可導(dǎo)。即函數(shù)在某點(diǎn)連續(xù)是函數(shù)在該點(diǎn)可導(dǎo)的必要條件而不是充分條件。

          2、導(dǎo)數(shù)存在的充分必要條件函數(shù)f(x)在點(diǎn)x0處可導(dǎo)的充分必要條件是在點(diǎn)x0處的左極限lim(h→-0)[f(x0+h)-f(x0)]/h及右極限lim(h→+0)[f(x0+h)-f(x0)]/h都存在且相等,即左導(dǎo)數(shù)f-′(x0)右導(dǎo)數(shù)f+′(x0)存在相等。

          3、函數(shù)f(x)在點(diǎn)x0處可微=>函數(shù)在該點(diǎn)處可導(dǎo);函數(shù)f(x)在點(diǎn)x0處可微的充分必要條件是函數(shù)在該點(diǎn)處可導(dǎo)。

          4、原函數(shù)可導(dǎo)則反函數(shù)也可導(dǎo),且反函數(shù)的導(dǎo)數(shù)是原函數(shù)導(dǎo)數(shù)的倒數(shù)。

          二、函數(shù)與極限

          1、函數(shù)的極限

          定理(極限的局部保號(hào)性)如果lim(x→x0)時(shí)f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。

          函數(shù)f(x)當(dāng)x→x0時(shí)極限存在的充分必要條件是左極限右極限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等則limf(x)不存在。

          一般的說(shuō),如果lim(x→∞)f(x)=c,則直線y=c是函數(shù)y=f(x)的圖形水平漸近線。如果lim(x→x0)f(x)=∞,則直線x=x0是函數(shù)y=f(x)圖形的鉛直漸近線。

          2、數(shù)列的極限定理(極限的唯一性)數(shù)列{xn}不能同時(shí)收斂于兩個(gè)不同的極限。

          定理(收斂數(shù)列的有界性)如果數(shù)列{xn}收斂,那么數(shù)列{xn}一定有界。

          如果數(shù)列{xn}無(wú)界,那么數(shù)列{xn}一定發(fā)散;但如果數(shù)列{xn}有界,卻不能斷定數(shù)列{xn}一定收斂,例如數(shù)列1,-1,1,-1,(-1)n+1…該數(shù)列有界但是發(fā)散,所以數(shù)列有界是數(shù)列收斂的必要條件而不是充分條件。

          定理(收斂數(shù)列與其子數(shù)列的關(guān)系)如果數(shù)列{xn}收斂于a,那么它的任一子數(shù)列也收斂于a.如果數(shù)列{xn}有兩個(gè)子數(shù)列收斂于不同的極限,那么數(shù)列{xn}是發(fā)散的,如數(shù)列1,-1,1,-1,(-1)n+1…中子數(shù)列{x2k-1}收斂于1,{xnk}收斂于-1,{xn}卻是發(fā)散的;同時(shí)一個(gè)發(fā)散的數(shù)列的子數(shù)列也有可能是收斂的。

          3、函數(shù)的有界性在定義域內(nèi)有f(x)≥K1則函數(shù)f(x)在定義域上有下界,K1為下界;如果有f(x)≤K2,則有上界,K2稱為上界。函數(shù)f(x)在定義域內(nèi)有界的充分必要條件是在定義域內(nèi)既有上界又有下界。

          4、極限存在準(zhǔn)則兩個(gè)重要極限lim(x→0)(sinx/x)=1;lim(x→∞)(1+1/x)x=1.夾逼準(zhǔn)則如果數(shù)列{xn}、{yn}、{zn}滿足下列條件:yn≤xn≤zn且limyn=a,limzn=a,那么limxn=a,對(duì)于函數(shù)該準(zhǔn)則也成立。

          單調(diào)有界數(shù)列必有極限。

          5、極限運(yùn)算法則定理有限個(gè)無(wú)窮小之和也是無(wú)窮小;有界函數(shù)與無(wú)窮小的乘積是無(wú)窮小;常數(shù)與無(wú)窮小的乘積是無(wú)窮小;有限個(gè)無(wú)窮小的乘積也是無(wú)窮小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b。

          6、函數(shù)的連續(xù)性設(shè)函數(shù)y=f(x)在點(diǎn)x0的某一鄰域內(nèi)有定義,如果函數(shù)f(x)當(dāng)x→x0時(shí)的極限存在,且等于它在點(diǎn)x0處的函數(shù)值f(x0),即lim(x→x0)f(x)=f(x0),那么就稱函數(shù)f(x)在點(diǎn)x0處連續(xù)。

          不連續(xù)情形:

          1、在點(diǎn)x=x0沒(méi)有定義;

          2、雖在x=x0有定義但lim(x→x0)f(x)不存在;

          3、雖在x=x0有定義且lim(x→x0)f(x)存在,但lim(x→x0)f(x)≠f(x0)時(shí)則稱函數(shù)在x0處不連續(xù)或間斷。

          如果x0是函數(shù)f(x)的間斷點(diǎn),但左極限及右極限都存在,則稱x0為函數(shù)f(x)的第一類間斷點(diǎn)(左右極限相等者稱可去間斷點(diǎn),不相等者稱為跳躍間斷點(diǎn))。非第一類間斷點(diǎn)的任何間斷點(diǎn)都稱為第二類間斷點(diǎn)(無(wú)窮間斷點(diǎn)和震蕩間斷點(diǎn))。

          定理有限個(gè)在某點(diǎn)連續(xù)的函數(shù)的和、積、商(分母不為0)是個(gè)在該點(diǎn)連續(xù)的函數(shù)。

          定理如果函數(shù)f(x)在區(qū)間Ix上單調(diào)增加或減少且連續(xù),那么它的反函數(shù)x=f(y)在對(duì)應(yīng)的區(qū)間Iy={y|y=f(x),x∈Ix}上單調(diào)增加或減少且連續(xù)。反三角函數(shù)在他們的定義域內(nèi)都是連續(xù)的。

          定理(最大值最小值定理)在閉區(qū)間上連續(xù)的函數(shù)在該區(qū)間上一定有最大值和最小值。如果函數(shù)在開(kāi)區(qū)間內(nèi)連續(xù)或函數(shù)在閉區(qū)間上有間斷點(diǎn),那么函數(shù)在該區(qū)間上就不一定有最大值和最小值。

          定理(有界性定理)在閉區(qū)間上連續(xù)的函數(shù)一定在該區(qū)間上有界,即m≤f(x)≤M.定理(零點(diǎn)定理)設(shè)函數(shù)f(x)在閉區(qū)間[a,b]上連續(xù),且f(a)與f(b)異號(hào)(即f(a)×f(b)。

          推論在閉區(qū)間上連續(xù)的函數(shù)必取得介于最大值M與最小值m之間的任何值。

        【考研高數(shù)應(yīng)對(duì)技巧】相關(guān)文章:

        筆試與應(yīng)對(duì)技巧求職材料的準(zhǔn)備06-16

        筆試與應(yīng)對(duì)技巧求職材料的相關(guān)準(zhǔn)備06-16

        面試遭刁難的十大應(yīng)對(duì)技巧06-28

        筆試、面試與應(yīng)對(duì)技巧求職材料的準(zhǔn)備[推薦]06-17

        考研英語(yǔ)寫(xiě)作技巧08-22

        求職面試靈活應(yīng)對(duì)面試官的技巧06-11

        考研英語(yǔ)寫(xiě)作技巧8篇08-22

        面試如何應(yīng)對(duì)07-28

        電話面試如何應(yīng)對(duì)07-28

        高情商問(wèn)候語(yǔ)10-20